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Abstract. We formulate the dissipative particle dynamics technique for multicomponent
interacting systems and show that the important property of detailed balance is satisfied.

There is currently growing interest in the development of ‘mesoscale’ modelling and
simulation methods for describing the complex dynamical behaviour of many kinds of soft
condensed matter, whose properties have defied conventional approaches. One illustration
of the challenge faced is provided by complex fluids, which include fluids with many co-
existing length and time scales, and those for which a hydrodynamic description is unknown
or does not exist at all: examples are ubiquitous and occur in multiphase flows, flow in
porous media, colloidal suspensions, microemulsions and polymeric fluids. The traditional
continuum-based approach to modelling the behaviour of such fluids, which is centred on
the formulation and solution of partial differential equations, has met with only limited
success; as a result, new methods are now being developed, which rely on a microscopic
description of the fluid.

In principle, the most accurate microscopic approach is based on the use of molecular
dynamics (MD), but the computational expense of doing this is so severe that hitherto
only a rather restricted number of numerical studies has been performed, mainly limited
to two spatial dimensions. (A notable exception is the recent large-scale MD work of
Laradji et al (1996) on the simulation of spinodal decomposition in three-dimensional
binary immiscible fluids.) As a result of these limitations, spatially and temporally discrete
lattice-gas automata (LGA) have been developed as an alternative technique since their
introduction by Frischet al (1986) and by Wolfram (1986); although originally pitted
against computational fluid dynamics in the area of turbulence modelling, more recently
it has become apparent that they have particular strengths for modelling non-equilibrium
behaviour in complex multicomponent fluids such as microemulsions (see, for example,
Rothman and Zaleski (1994) and Boghosianet al (1996a)). Simulations using LGA are
computationally much faster than MD, particularly since the natural time step—the mean
free time between collisions—is several orders of magnitude greater than that required by
MD. An important later development of LGA is the lattice-Boltzmann method, in which
one studies the dynamical behaviour of single-particle distribution functions (Benziet al
1992, Osbornet al 1995).
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The LGA method suffers from some disadvantages, however, including the lack of
Galilean invariance and the complexity of three-dimensional models (Rothman and Zaleski
1994). While the lattice-Boltzmann approximation method alleviates these difficulties, in
virtually every lattice-gas and lattice-Boltzmann model of multicomponent systems the
dynamics are microscopically irreversible. Put another way, in such models there is
no known detailed balance condition and therefore a Gibbsian equilibrium state is not
guaranteed to exist (see, for example, Boghosian and Taylor 1995). On the other hand,
certain generalizations of LGA offer the possibility of imposing detailed balance on these
models, albeit at increased computational cost (Boghosianet al 1996b).

Hoogerbrugge and Koelman (1992) introduced a new mesoscopic technique called
dissipative particle dynamics (DPD) with the intention of capturing the best features of MD
and LGA in a computationally efficient scheme. Like LGA, DPD should be regarded as
being based on a highly simplified microscopic model, which produces correct mesoscopic
and macroscopic behaviour. As with LGA, mass and momenta are locally conserved during
particle collisions, but while time remains discrete, space is continuous in DPD. The basic
properties of the single-component DPD fluid have been studied and its mean-field limit
shown to satisfy the Navier–Stokes equations of hydrodynamics (Español 1995). In this
paper, we formulate the dissipative particle dynamics of interacting multicomponent systems
and prove that, unlike the situation pertaining for LGA, detailed balance is preserved. A
multicomponent DPD model has recently been applied to the study of domain growth and
phase separation in binary immiscible fluids by Coveney and Novik (1996), with results
that can be directly compared to the binary immiscible lattice-gas automaton models of
Rothman and Keller (1988) and Emertonet al (1997).

Espãnol and Warren (1995) recently wrote down the stochastic differential equations and
an equivalent Fokker–Planck equation that correspond, with a minor modification, to the
discrete time updating algorithm of Hoogerbrugge and Koelman (1992) for a one-component
DPD fluid. In fact, one may regard these stochastic differential equations as furnishing the
‘true’ description of dissipative particle dynamics, and the discrete-time algorithm as an
approximation to it, in the same way as the necessarily discrete-time molecular dynamics
algorithm is an approximation to Newton’s laws of motion.

For a multicomponent system, the stochastic differential equations (SDE) that govern
the positionriα and momentumpiα of the ith particle of speciesα in DPD are given as
follows, by a natural extension of the one-component equations (Español and Warren 1995):

driα = piα

miα

dt

dpiα =
[ ∑

β

∑
jβ

F C
iαjβ

+
∑

β

∑
jβ

−ωiαjβ
(eiαjβ

· viαjβ
)eiαjβ

]
dt (1)

+
∑

β

∑
jβ

σω1/2(riαjβ
)eiαjβ

dWiαjβ

wheremiα is the mass of particleiα, and we have made the following definitions:

eiαjβ
: = riαjβ

riαjβ

riαjβ
: = riα − rjβ

riαjβ
: = |riα − rjβ

|
viαjβ

: = viα − vjβ

viα : = piα /miα . (2)
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The conservative force exerted on particleiα by particlejβ is

F C
iαjβ

: = F C
iαjβ

(riαjβ
) (3)

and the friction weight function,

ωiαjβ
= ωiαjβ

(riαjβ
) (4)

provides the range of interaction of the dissipative and random forces. Note that we have re-
absorbed the friction coefficient of the one-component version intoω in order to simplify the
notation (since different species might interact with different friction coefficients in general).
As a consequence, the normalization

∫
ω(r) dr = V/N = n−1 (with V the volume,N the

total number of particles andn the number density), no longer holds and insteadω has
dimensions of (force/velocity). The noise amplitudeσ is given by

σ = (2kBT )1/2 (5)

where T is the temperature of the equilibrium state towards which the system relaxes
(assuming that this is permitted by the boundary conditions) andkB is Boltzmann’s constant.
Finally, dWiαjβ

= dWjβiα are independent increments of the Wiener process. To be specific,
we shall assume the Itô interpretation for these processes, which in turn requires application
of the Itô calculus rule

dWiαjβ
dWi ′αj ′

β
= (δiαi ′α δjβj ′

β
+ δiαj ′

β
δjβ i ′α ) dt. (6)

Equation (6) says that dWiαjβ
(t) is an infinitesimal of order 1/2 (Gardiner 1983).

The SDEs given in equation (1) closely resemble those defining the original DPD
updating algorithm proposed by Hoogerbrugge and Koelman (1992), although a slightly
different notation is used. Note, however, the occurrence in equation (1) of the square root
of the friction weight function in the random force term: this is in contrast to the original
algorithm and is required in order to obtain the correct (canonical) equilibrium ensemble
(Espãnol and Warren 1995).

The Fokker–Planck equation that is mathematically equivalent to the SDEs in
equation (1) is given by

∂tρ(�; t) = Lρ(�; t) (7)

(Gardiner 1983), where� denotes the set of all positions and momenta of the particles,
ρ(�; t) is the probability density in phase space and the Fokker–Planck operator is (Español
1995)

L ≡ −
[ ∑

α

∑
iα

piα

m
· ∂

∂riα

+
∑
αβ

∑
iα,jβ

F C
iαjβ

· ∂

∂piα

]

+
∑
αβ

∑
iα,jβ

ωiαjβ
eiαjβ

· ∂

∂piα

[
(eiαjβ

· viαjβ
) + kBT eiαjβ

·
(

∂

∂piα

− ∂

∂pjβ

)]
= LC + LD. (8)

The first term in square brackets is the Liouville operatorLC. The second termLD, which
is proportional to the friction weight function, takes into account the effects of dissipation.
In the absence of dissipation, equation (1) reduces to Newton’s equations of motion and
equation (7) becomes Liouville’s equation. Note that the diffusion tensors associated with
the second momentum derivatives do not depend on the momenta of the particles, implying
that the It̂o and Stratonovich interpretations in fact furnish identical descriptions (Gardiner
1983).
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It is a matter of substitution to check that the canonical equilibrium ensemble is not
only a stationary solution of the Liouville equation but also a stationary solution of the
Fokker–Planck equation (7), that isLρeq = 0, where

ρeq(�) = 1

Z
exp{−H(�)/kBT } = 1

Z
exp

{
−

( ∑
α

∑
iα

p2
iα

2miα

+ V (r)

)/
kBT

}
(9)

H(�) is the Hamiltonian of the system,V is the potential function that give rise to the
conservative forcesF C, andZ is the canonical partition function.

We shall need several operators related to the Fokker–Planck operatorL. For example,
if we use the SDE (1) with the aid of the calculus rule (6) in order to compute the differential
df of an arbitrary functionf , we find

df =
∑

α

∑
iα

∂f

∂riα

· driα + ∂f

∂piα

· dpiα

+
∑
αβ

∑
iαjβ

1

2

∂2f

∂riα ∂rjβ

driα drjβ
+ 1

2

∂2f

∂riα ∂pjβ

driα dpjβ

+1

2

∂2f

∂piα ∂pjβ

dpiα dpjβ
+ O(dt3/2)

= L+f dt +
∑
iαjβ

σω1/2(riαjβ
)eiαjβ

∂f

∂piα

dWiαjβ
+ O( dt3/2). (10)

The adjoint operatorL+ is given by

L+: =
[ ∑

α

∑
iα

piα

m
· ∂

∂riα

+
∑
αβ

∑
iαjβ

F C
iαjβ

· ∂

∂piα

]

+
∑
αβ

∑
iαjβ

ωiαjβ

[
− (eiαjβ

· viαjβ
)eiαjβ

· ∂

∂piα

+kBT eiαjβ
· ∂

∂piα

eiαjβ
·
(

∂

∂piα

− ∂

∂pjβ

)]
= LC+ + LD+. (11)

This operator is obtained fromL by changing the sign of all partial derivatives. The
relevance ofL+ stems from the fact that it allows time derivatives of ensemble averages to
be calculated, because of the following property derived from (10)

d

dt
〈f 〉 = 〈L+f 〉. (12)

A Fokker–Planck equation is said to satisfy detailed balance if the following identity
holds (Risken 1989)

Lρeqφ = ρeqL+εφ (13)

whereφ is an arbitrary function of positions and momenta�. The operatorL+ε is obtained
from L+ by reversing the sign of the momenta. This condition ensures that the joint
probability distribution satisfies the reversibility property (Risken 1989)

ρ(�, t, �′, t ′) = ρ(ε�′, t, ε�, t ′). (14)

We now show that detailed balance is actually satisfied in DPD. We first note that
Lρeqφ = LCρeqφ + LDρeqφ. In addition,LC contains only first derivatives and, therefore,
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LCρeqφ = φLCρeq + ρeqLCφ = ρeqLC+εφ. In other words, the Liouville operator satisfies
detailed balance, as is expected from the reversibility of the conservative part of the
dynamics. We now consider the dissipative part

LDρeqφ =
∑
αβ

∑
iα,jβ

ωiαjβ
eiαjβ

· ∂

∂piα

[
(eiαjβ

· viαjβ
) + kBT eiαjβ

·
(

∂

∂piα

− ∂

∂pjβ

)]
ρeqφ

=
∑
αβ

∑
iα,jβ

ωiαjβ
eiαjβ

· ∂

∂piα

[
kBTρeqeiαjβ

·
(

∂φ

∂piα

− ∂φ

∂pjβ

)]

= − ρeq
∑
αβ

∑
iα,jβ

ωiαjβ
eiαjβ

· viα

[
eiαjβ

·
(

∂φ

∂piα

− ∂φ

∂pjβ

)]

+ρeq
∑
αβ

∑
iα,jβ

ωiαjβ
eiαjβ

· ∂

∂piα

[
kBT eiαjβ

·
(

∂φ

∂piα

− ∂φ

∂pjβ

)]
= − ρeq

∑
αβ

∑
iα,jβ

ωiαjβ
(eiαjβ

· viαjβ
)eiαjβ

· ∂φ

∂piα

+ρeq
∑
αβ

∑
iα,jβ

ωiαjβ
eiαjβ

· ∂

∂piα

[
kBT eiαjβ

·
(

∂φ

∂piα

− ∂φ

∂pjβ

)]
= ρeqLD+εφ. (15)

This proves that detailed balance is satisfied for interacting multicomponent systems in
DPD, just as it is for one-component fluids (Español 1995).

Strictly speaking, detailed balance is satisfied for the underlying continuous-time version
of dissipative particle dynamics, but is only approximately satisfied by the discrete-time
algorithm. The approximation improves as the size of the time-step is reduced. This is
analogous to the situation in molecular dynamics. There, Newton’s laws ensure that the
energy and momentum are rigorously conserved in the absence of external forces, while an
MD algorithm only approximately conserves these quantities: small fluctuations and drift
in the momentum and energy occur, but these effects diminish as the time-steps become
progressively smaller.
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